<legend id="sfctu"><i id="sfctu"><dfn id="sfctu"></dfn></i></legend>

  1. <track id="sfctu"><i id="sfctu"><del id="sfctu"></del></i></track>

    《電子技術應用》
    您所在的位置:首頁 > 其他 > 設計應用 > 基于BERT的提示學習實現軟件需求精確分類
    基于BERT的提示學習實現軟件需求精確分類
    信息技術與網絡安全 2期
    羅賢昌,薛吟興
    (中國科學技術大學 計算機科學與技術學院,安徽 合肥230026)
    摘要: 軟件需求是用戶對軟件效用的直接回饋, 實現對軟件需求工程精確分類可大幅降低維護成本并顯著加快軟件開發維護的流程。使用傳統的基于機器學習分類方法(如邏輯回歸、支持向量機以及K近鄰算法),或簡單地應用BERT(Bidirectional Encoder Representation from Transformers)模型都不能很好地利用軟件需求PROMISE數據集樣本,最終表現為通用性差或分類效率低。為了增強BERT模型對自然語言文本的語義理解能力,應用提示學習的思想,將K分類選擇問題轉化為二分判斷問題。實驗結果表明,無需對不均衡的數據集執行樣本均衡策略,模型分類性能便遠優于上述兩種分類工作,獲得最佳的預測結果。
    中圖分類號: TP183
    文獻標識碼: A
    DOI: 10.19358/j.issn.2096-5133.2022.02.007
    引用格式: 羅賢昌,薛吟興. 基于BERT的提示學習實現軟件需求精確分類[J].信息技術與網絡安全,2022,41(2):39-45.
    Accurately classify software requirements using prompt learning on BERT
    Luo Xianchang,Xue Yinxing
    (Department of Computer Science and Technology,University of Science and Technology of China,Hefei 230026,China)
    Abstract: Software requirement is a direct feedback from users to software utility. The accurate classification of software requirements engineering can greatly reduce maintenance costs and significantly speed up the process of software development and maintenance. Traditional machine learning-based classification methods(such as logistic regression, support vector machines, and K-nearest neighbor algorithms) or simply applying BERT(Bidirectional Encoder Representation from Transformers) models cannot learn to make the most use of the PROMISE data set for software requirements, and ultimately appear to be poor generalization or low classification efficiency. In order to enhance the BERT model′s ability to understand the semantics of natural language texts, this paper applies the idea of prompt learning to transform the K classification selection problem into a binary judgment problem. The experimental results show that there is no need to implement a sample equalization strategy for unbalanced data sets. The classification performance of this model is far superior to the above two classification tasks, and the best prediction results are finally obtained.
    Key words : software requirement;accurately classify;bidirectional encoder representation from transformer;prompt learning

    0 引言

    軟件需求是用戶對軟件效用最直觀的反饋之一,常包含用戶體驗、功能需求以及質量問題等內容。軟件需求一般可分為功能需求與非功能需求,前者主要是對軟件系統的服務、函數行為的描述,而后者往往涉及可靠性、可用性、安全性、隱私性或軟件權限等非功能問題。隨著互聯網技術的飛速發展,各種客戶端和移動端的應用數量急速增加,截至2021年11月,蘋果應用商店就在全球上架了含40多種語言、超180萬種的應用軟件,各應用的用戶評論更是爆炸式增長。由此可見,應對超大規模軟件需求工程問題已經刻不容緩,實現軟件需求的自動分類可以大幅降低人工分類的工作壓力、成本與誤差,能快速地精確分析最新鮮最實際的用戶體驗反饋,進而高效確定改進方向,顯著加速軟件開發維護流程,極大地提升用戶體驗。


    本文詳細內容請下載:http://www.lhjjinsheng.com/resource/share/2000003949。





    作者信息:

    羅賢昌,薛吟興

    (中國科學技術大學 計算機科學與技術學院,安徽 合肥230026)




    微信圖片_20210517164139.jpg

    此內容為AET網站原創,未經授權禁止轉載。
    2012国语在线看免费观看下载
    <legend id="sfctu"><i id="sfctu"><dfn id="sfctu"></dfn></i></legend>

    1. <track id="sfctu"><i id="sfctu"><del id="sfctu"></del></i></track>